Ultrastrong topology

In functional analysis, the ultrastrong topology, or σ-strong topology, or strongest topology on the set B(H) of bounded operators on a Hilbert space is the topology defined by the family of seminormsthat consists of trace class operators.[1]: 68 It was introduced by John von Neumann in 1936.For example, on any norm-bounded set the strong operator and ultrastrong topologies are the same.One problem with the strong operator topology is that the dual of B(H) with the strong operator topology is "too small".The ultrastrong topology fixes this problem: the dual is the full predual B*(H) of all trace class operators.In general the ultrastrong topology is better than the strong operator topology, but is more complicated to define so people usually use the strong operator topology if they can get away with it.If H1 is a separable infinite dimensional Hilbert space then B(H) can be embedded in B(H⊗H1) by tensoring with the identity map on H1.[1]: 68 The adjoint map is not continuous in the ultrastrong topology.
functional analysisbounded operatorsHilbert spacepredualtrace classJohn von NeumanntensoringStrong operator topologyTopological tensor productTopologies on the set of operators on a Hilbert spaceUltraweak topologyBerlinSchaefer, Helmut H.Banach spaceAsplundBanachBanach latticeGrothendieck HilbertInner product spacePolarization identityPolynomiallyReflexiveL-semi-inner productStrictlyUniformlyUniformly smoothInjectiveProjectiveTensor productof Hilbert spacesBarrelledCompleteF-spaceFréchetLocally convexMinkowski functionalsMackeyMetrizableNormedQuasinormedStereotypeBanach–Mazur compactumDual spaceDual normOperatorUltraweakStrongUniform convergenceLinear operatorsAdjointBilinearsesquilinearBoundedClosedCompacton Hilbert spacesContinuousDensely definedkernelHilbert–SchmidtFunctionalspositivePseudo-monotoneNormalNuclearSelf-adjointStrictly singularTransposeUnitaryOperator theoryBanach algebrasC*-algebrasOperator spaceSpectrumC*-algebraradiusSpectral theoryof ODEsSpectral theoremPolar decompositionSingular value decompositionAnderson–KadecBanach–AlaogluBanach–MazurBanach–SaksBanach–Schauder (open mapping)Banach–Steinhaus (Uniform boundedness)Bessel's inequalityCauchy–Schwarz inequalityClosed graphClosed rangeEberlein–ŠmulianFreudenthal spectralGelfand–MazurGelfand–NaimarkGoldstineHahn–Banachhyperplane separationKrein–MilmanMackey–ArensMazur's lemmaM. Riesz extensionParseval's identityRiesz's lemmaRiesz representationSchauder fixed-pointAbstract Wiener spaceBanach manifoldbundleBochner spaceConvex seriesDifferentiation in Fréchet spacesDerivativesGateauxfunctionalholomorphicIntegralsBochnerDunfordGelfand–PettisregulatedPaley–WienerFunctional calculusMeasuresLebesgueProjection-valuedVectorWeaklyStronglyAbsolutely convexAbsorbingAffineBalanced/CircledConvexConvex cone (subset)Linear cone (subset)RadialRadially convex/Star-shapedSymmetricZonotopeAffine hullAlgebraic interior (core)Bounding pointsConvex hullExtreme pointInteriorLinear spanMinkowski additionAbsolute continuity AC b a ( Σ ) {\displaystyle ba(\Sigma )} c spaceBanach coordinate BKBesov B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbb {R} )} Birnbaum–OrliczBounded variation BVBs spaceContinuous C(K) with K compact HausdorffHardy HpMorrey–Campanato L λ , p ( Ω ) {\displaystyle L^{\lambda ,p}(\Omega )} Schwartz S ( R n ) {\displaystyle S\left(\mathbb {R} ^{n}\right)} Segal–Bargmann FSequence spaceSobolev Wk,pSobolev inequalityTriebel–LizorkinWiener amalgam W ( X , L p ) {\displaystyle W(X,L^{p})} Differential operatorFinite element methodMathematical formulation of quantum mechanicsOrdinary Differential Equations (ODEs)Validated numericsHilbert spacesInner productPrehilbert spaceOrthogonal complementOrthonormal basisHilbert projection theoremCompact operator on Hilbert spaceSesquilinear formCn(K) with K compact & n<∞DualitylinearDual systemDual topologyOperator topologiesPolar setPolar topologyTopologies on spaces of linear mapsTopologiesNorm topologyUltraweak/Weak-*in Hilbert spacesMackey Strong dualTranspose of a linear mapSaturated familyTotal setBiorthogonal systemTopological vector spacesCompletenessContinuous linear operatorLinear functionalFréchet spaceLinear mapLocally convex spaceMetrizabilityTopological vector spaceVector spaceClosed graph theoremF. Riesz'sVector-valued Hahn–BanachOpen mapping (Banach–Schauder)Bounded inverseUniform boundedness (Banach–Steinhaus)Bilinear operatorAlmost openDiscontinuousTopological homomorphismSeminormSublinear functionAbsolutely convex/diskAbsorbing/RadialBanach disksComplemented subspacePrevalent/ShyB-complete/PtakCountablyBK-spaceUltra-BornologicalBraunerConvenient(DF)-spaceDistinguishedFK-AK spaceFK-spaceGrothendieckInfrabarreledInterpolation spaceK-spaceLB-spaceLF-space(Pseudo)MetrizableMontelQuasibarrelledQuasi-completeSchwartzSemi-completeQuasi-UltrabarrelledWebbedWith the approximation property