Asplund space

In mathematics — specifically, in functional analysis — an Asplund space or strong differentiability space is a type of well-behaved Banach space.Asplund spaces were introduced in 1968 by the mathematician Edgar Asplund, who was interested in the Fréchet differentiability properties of Lipschitz functions on Banach spaces.There are many equivalent definitions of what it means for a Banach space X to be an Asplund space:
mathematicsfunctional analysiswell-behavedBanach spacemathematicianFréchet differentiabilityLipschitz functionsseparable subspacecontinuous dual spacecontinuousconvex functionconvex subsetGδ-subsetRadon–Nikodým propertybounded subsetweak-∗-slicescompactconvexconvex hullexposed pointshomeomorphicclosedlinear subspacequotient spacePreissGateaux differentiableBulletin of the London Mathematical SocietyProceedings of the American Mathematical SocietyNamioka, I.Phelps, R. R.Duke Mathematical JournalPreiss, DavidJournal of Functional AnalysisIsrael Journal of MathematicstopicsglossaryBanachFréchetHilbertHölderNuclearOrliczSchwartzSobolevTopological vectorBarrelledCompleteLocally convexReflexiveSeparableHahn–BanachRiesz representationClosed graphUniform boundedness principleKrein–MilmanMin–maxGelfand–NaimarkBanach–AlaogluAdjointBoundedHilbert–SchmidtNormalTrace classTransposeUnboundedUnitaryBanach algebraC*-algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsFunctional calculusIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theoryTopological vector spacesCompletenessContinuous linear operatorLinear functionalFréchet spaceLinear mapLocally convex spaceMetrizabilityOperator topologiesTopological vector spaceVector spaceAnderson–KadecClosed graph theoremF. Riesz'shyperplane separationVector-valued Hahn–BanachOpen mapping (Banach–Schauder)Bounded inverseUniform boundedness (Banach–Steinhaus)Bilinear operatorAlmost openDensely definedDiscontinuousTopological homomorphismFunctionalLinearBilinearSesquilinearSeminormSublinear functionAbsolutely convex/diskAbsorbing/RadialAffineBalanced/CircledBanach disksBounding pointsComplemented subspaceConvex cone (subset)Linear cone (subset)Extreme pointPrevalent/ShyRadialRadially convex/Star-shapedSymmetricAffine hullAlgebraic interior (core)Linear spanMinkowski additionB-complete/PtakCountablyBK-spaceUltra-BornologicalBraunerConvenient(DF)-spaceDistinguishedF-spaceFK-AK spaceFK-spaceGrothendieckInfrabarreledInterpolation spaceK-spaceLB-spaceLF-spaceMackey(Pseudo)MetrizableMontelQuasibarrelledQuasi-completeQuasinormedPolynomiallySemi-completeStereotypeStrictlyUniformlyQuasi-UltrabarrelledUniformly smoothWebbedWith the approximation property