F-space

In functional analysis, an F-space is a vector spaceover the real or complex numbers together with a metricis called an F-norm, although in general an F-norm is not required to be homogeneous.By translation-invariance, the metric is recoverable from the F-norm.Thus, a real or complex F-space is equivalently a real or complex vector space equipped with a complete F-norm.Some authors use the term Fréchet space rather than F-space, but usually the term "Fréchet space" is reserved for locally convex F-spaces.Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metrizable topological vector space.The metric may or may not necessarily be part of the structure on an F-space; many authors only require that such a space be metrizable in a manner that satisfies the above properties.All Banach spaces and Fréchet spaces are F-spaces.In particular, a Banach space is an F-space with an additional requirement that[1] The Lp spaces can be made into F-spaces for allthey can be made into locally convex and thus Fréchet spaces and even Banach spaces.It admits no continuous seminorms and no continuous linear functionals — it has trivial dual space.be the space of all complex valued Taylor serieson the unit discare F-spaces under the p-norm:is a quasi-Banach algebra.is a bounded linear (multiplicative functional) onbe any[note 1] metric on a vector spaceinto a topological vector space.is a complete metric space thenis a complete topological vector space.The open mapping theorem implies that ifinto complete metrizable topological vector spaces (for example, Banach or Fréchet spaces) and if one topology is finer or coarser than the other then they must be equal (that is, if
sub-Stonean spacefunctional analysisvector spacecomplexmetrictranslation-invariantcompletetranslation-invarianceFréchet spacelocally convextopological vector spacemetrizableBanach spacesFréchet spacesLp spacesdual spaceTaylor seriesp-normquasi-Banach algebracomplete topological vector spaceopen mapping theoremmetrizable topological vector spacesfiner or coarseralmost openopen mapsecond categorysurjectiveBanach spaceBarreled spaceCountably quasi-barrelled spaceComplete metric spaceDF-spaceHilbert spaceK-space (functional analysis)LB-spaceLF-spaceMetrizable topological vector spaceNuclear spaceProjective tensor productLecture Notes in MathematicsSpringer-VerlagRudin, WalterMcGraw-Hill Science/Engineering/MathSchaefer, Helmut H.Schechter, EricTrèves, FrançoistopicsglossaryBanachFréchetHilbertHölderNuclearOrliczSchwartzSobolevTopological vectorBarrelledReflexiveSeparableHahn–BanachRiesz representationClosed graphUniform boundedness principleKrein–MilmanMin–maxGelfand–NaimarkBanach–AlaogluAdjointBoundedCompactHilbert–SchmidtNormalTrace classTransposeUnboundedUnitaryBanach algebraC*-algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsFunctional calculusIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theoryTopological vector spacesCompletenessContinuous linear operatorLinear functionalLinear mapLocally convex spaceMetrizabilityOperator topologiesAnderson–KadecClosed graph theoremF. Riesz'shyperplane separationVector-valued Hahn–BanachOpen mapping (Banach–Schauder)Bounded inverseUniform boundedness (Banach–Steinhaus)Bilinear operatorContinuousClosedDensely definedDiscontinuousTopological homomorphismFunctionalLinearBilinearSesquilinearSeminormSublinear functionAbsolutely convex/diskAbsorbing/RadialAffineBalanced/CircledBanach disksBounding pointsComplemented subspaceConvexConvex cone (subset)Linear cone (subset)Extreme pointPrevalent/ShyRadialRadially convex/Star-shapedSymmetricAffine hullAlgebraic interior (core)Convex hullLinear spanMinkowski additionAsplundB-complete/PtakCountablyBK-spaceUltra-BornologicalBraunerConvenient(DF)-spaceDistinguishedFK-AK spaceFK-spaceGrothendieckInfrabarreledInterpolation spaceK-spaceMackey(Pseudo)MetrizableMontelQuasibarrelledQuasi-completeQuasinormedPolynomiallySemi-completeStereotypeStrictlyUniformlyQuasi-UltrabarrelledUniformly smoothWebbedWith the approximation property