Eberlein–Šmulian theorem

In the mathematical field of functional analysis, the Eberlein–Šmulian theorem (named after William Frederick Eberlein and Witold Lwowitsch Schmulian) is a result that relates three different kinds of weak compactness in a Banach space.While this equivalence is true in general for a metric space, the weak topology is not metrizable in infinite dimensional vector spaces, and so the Eberlein–Šmulian theorem is needed.The Eberlein–Šmulian theorem is important in the theory of PDEs, and particularly in Sobolev spaces.Thus the theorem implies that bounded subsets are weakly sequentially precompact, and therefore from every bounded sequence of elements of that space it is possible to extract a subsequence which is weakly converging in the space.Since many PDEs only have solutions in the weak sense, this theorem is an important step in deciding which spaces of weak solutions to use in solving a PDE.
mathematicalfunctional analysisWilliam Frederick EberleinWitold Lwowitsch SchmuliancompactnessBanach spacecluster pointSequential compactnessLimit point compactnesslimit pointmetric spaceSobolev spacesreflexive Banach spacesAlaoglu's theoremBanach–Alaoglu theoremBishop–Phelps theoremMazur's lemmaJames' theoremGoldstine theoremConway, John B.Graduate Texts in MathematicsSpringer-VerlagAsplundBanachBanach latticeGrothendieck HilbertInner product spacePolarization identityPolynomiallyReflexiveL-semi-inner productStrictlyUniformlyUniformly smoothInjectiveProjectiveTensor productof Hilbert spacesBarrelledCompleteF-spaceFréchetLocally convexMinkowski functionalsMackeyMetrizableNormedQuasinormedStereotypeBanach–Mazur compactumDual spaceDual normOperatorUltraweakStrongUltrastrongUniform convergenceLinear operatorsAdjointBilinearsesquilinearBoundedClosedCompacton Hilbert spacesContinuousDensely definedkernelHilbert–SchmidtFunctionalspositivePseudo-monotoneNormalNuclearSelf-adjointStrictly singularTrace classTransposeUnitaryOperator theoryBanach algebrasC*-algebrasOperator spaceSpectrumC*-algebraradiusSpectral theoryof ODEsSpectral theoremPolar decompositionSingular value decompositionAnderson–KadecBanach–AlaogluBanach–MazurBanach–SaksBanach–Schauder (open mapping)Banach–Steinhaus (Uniform boundedness)Bessel's inequalityCauchy–Schwarz inequalityClosed graphClosed rangeFreudenthal spectralGelfand–MazurGelfand–NaimarkGoldstineHahn–Banachhyperplane separationKrein–MilmanMackey–ArensM. Riesz extensionParseval's identityRiesz's lemmaRiesz representationSchauder fixed-pointAbstract Wiener spaceBanach manifoldbundleBochner spaceConvex seriesDifferentiation in Fréchet spacesDerivativesGateauxfunctionalholomorphicIntegralsBochnerDunfordGelfand–PettisregulatedPaley–WienerFunctional calculusMeasuresLebesgueProjection-valuedVectorWeaklyStronglyAbsolutely convexAbsorbingAffineBalanced/CircledConvexConvex cone (subset)Linear cone (subset)RadialRadially convex/Star-shapedSymmetricZonotopeAffine hullAlgebraic interior (core)Bounding pointsConvex hullExtreme pointInteriorLinear spanMinkowski additionAbsolute continuity AC b a ( Σ ) {\displaystyle ba(\Sigma )} c spaceBanach coordinate BKBesov B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbb {R} )} Birnbaum–OrliczBounded variation BVBs spaceContinuous C(K) with K compact HausdorffHardy HpMorrey–Campanato L λ , p ( Ω ) {\displaystyle L^{\lambda ,p}(\Omega )} Schwartz S ( R n ) {\displaystyle S\left(\mathbb {R} ^{n}\right)} Segal–Bargmann FSequence spaceSobolev Wk,pSobolev inequalityTriebel–LizorkinWiener amalgam W ( X , L p ) {\displaystyle W(X,L^{p})} Differential operatorFinite element methodMathematical formulation of quantum mechanicsOrdinary Differential Equations (ODEs)Validated numericstopicsglossaryHölderOrliczSchwartzSobolevTopological vectorSeparableUniform boundedness principleMin–maxUnboundedBanach algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theorymathematical analysis