Goldstine theorem

In functional analysis, a branch of mathematics, the Goldstine theorem, named after Herman Goldstine, is stated as follows: The conclusion of the theorem is not true for the norm topology, which can be seen by considering the Banach space of real sequences that converge to zero, c0 spaceand its bi-dual space Lp spaceδ > 0 ,x ∈ ( 1 + δ )so it suffices to show that the intersection is nonempty.Assume for contradiction that it is empty.and by the Hahn–Banach theorem there exists a linear form= 0 , φ ( x ) ≥ 1 + δφ ∈ span ⁡1 + δ ≤ φ ( x ) =Examine the setbe the embedding defined byEv{\displaystyle J(x)={\text{Ev}}_{x},}Ev{\displaystyle {\text{Ev}}_{x}(\varphi )=\varphi (x)}Sets of the formform a base for the weak* topology,[2] so density follows once it is shownEv{\displaystyle {\text{Ev}}_{x}\in U.}Ev{\displaystyle {\text{Ev}}_{x}\in (1+\delta )J(B)\cap U.}Ev{\displaystyle {\frac {1}{1+\delta }}{\text{Ev}}_{x}\in J(B).}The goal is to show that for a sufficiently smallEv{\displaystyle {\frac {1}{1+\delta }}{\text{Ev}}_{x}\in J(B)\cap U.}Directly checking, one hasNote that one can choosesufficiently large so that
functional analysisHerman GoldstineBanach spacebidual spacedense subsetc0 spaceLp spaceHahn–Banach theoremBanach–Alaoglu theoremBishop–Phelps theoremEberlein–Šmulian theoremJames' theoremMazur's lemmaRudin, WalterMcGraw-Hill Science/Engineering/MathAsplundBanachBanach latticeGrothendieck HilbertInner product spacePolarization identityPolynomiallyReflexiveL-semi-inner productStrictlyUniformlyUniformly smoothInjectiveProjectiveTensor productof Hilbert spacesBarrelledCompleteF-spaceFréchetLocally convexMinkowski functionalsMackeyMetrizableNormedQuasinormedStereotypeBanach–Mazur compactumDual spaceDual normOperatorUltraweakStrongUltrastrongUniform convergenceLinear operatorsAdjointBilinearsesquilinearBoundedClosedCompacton Hilbert spacesContinuousDensely definedkernelHilbert–SchmidtFunctionalspositivePseudo-monotoneNormalNuclearSelf-adjointStrictly singularTrace classTransposeUnitaryOperator theoryBanach algebrasC*-algebrasOperator spaceSpectrumC*-algebraradiusSpectral theoryof ODEsSpectral theoremPolar decompositionSingular value decompositionAnderson–KadecBanach–AlaogluBanach–MazurBanach–SaksBanach–Schauder (open mapping)Banach–Steinhaus (Uniform boundedness)Bessel's inequalityCauchy–Schwarz inequalityClosed graphClosed rangeEberlein–ŠmulianFreudenthal spectralGelfand–MazurGelfand–NaimarkHahn–Banachhyperplane separationKrein–MilmanMackey–ArensM. Riesz extensionParseval's identityRiesz's lemmaRiesz representationSchauder fixed-pointAbstract Wiener spaceBanach manifoldbundleBochner spaceConvex seriesDifferentiation in Fréchet spacesDerivativesGateauxfunctionalholomorphicIntegralsBochnerDunfordGelfand–PettisregulatedPaley–WienerFunctional calculusMeasuresLebesgueProjection-valuedVectorWeaklyStronglyAbsolutely convexAbsorbingAffineBalanced/CircledConvexConvex cone (subset)Linear cone (subset)RadialRadially convex/Star-shapedSymmetricZonotopeAffine hullAlgebraic interior (core)Bounding pointsConvex hullExtreme pointInteriorLinear spanMinkowski additionAbsolute continuity AC b a ( Σ ) {\displaystyle ba(\Sigma )} c spaceBanach coordinate BKBesov B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbb {R} )} Birnbaum–OrliczBounded variation BVBs spaceContinuous C(K) with K compact HausdorffHardy HpMorrey–Campanato L λ , p ( Ω ) {\displaystyle L^{\lambda ,p}(\Omega )} Schwartz S ( R n ) {\displaystyle S\left(\mathbb {R} ^{n}\right)} Segal–Bargmann FSequence spaceSobolev Wk,pSobolev inequalityTriebel–LizorkinWiener amalgam W ( X , L p ) {\displaystyle W(X,L^{p})} Differential operatorFinite element methodMathematical formulation of quantum mechanicsOrdinary Differential Equations (ODEs)Validated numericstopicsglossaryHölderOrliczSchwartzSobolevTopological vectorSeparableUniform boundedness principleMin–maxUnboundedBanach algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theory