Banach–Mazur compactum

In the mathematical study of functional analysis, the Banach–Mazur distance is a way to define a distance on the set-dimensional normed spaces.With this distance, the set of isometry classes of-dimensional normed spaces becomes a compact metric space, called the Banach–Mazur compactum.are two finite-dimensional normed spaces with the same dimension, let{\displaystyle \operatorname {GL} (X,Y)}denote the collection of all linear isomorphismsthe operator norm of such a linear map — the maximum factor by which it "lengthens" vectors.{\displaystyle \delta (X,Y)=\log {\Bigl (}\inf \left\{\left\|T\right\|\left\|T^{-1}\right\|:T\in \operatorname {GL} (X,Y)\right\}{\Bigr )}.}are isometrically isomorphic.Equipped with the metric δ, the space of isometry classes of-dimensional normed spaces becomes a compact metric space, called the Banach–Mazur compactum.Many authors prefer to work with the multiplicative Banach–Mazur distance{\displaystyle d(X,Y):=\mathrm {e} ^{\delta (X,Y)}=\inf \left\{\left\|T\right\|\left\|T^{-1}\right\|:T\in \operatorname {GL} (X,Y)\right\},}F. John's theorem on the maximal ellipsoid contained in a convex body gives the estimate: wherewith the Euclidean norm (see the article onHowever, for the classical spaces, this upper bound for the diameter ofFor example, the distance between(up to a multiplicative constant independent from the dimensionA major achievement in the direction of estimating the diameter ofis due to E. Gluskin, who proved in 1981 that the (multiplicative) diameter of the Banach–Mazur compactum is bounded below byGluskin's method introduces a class of random symmetric polytopesand the normed spacesas unit ball (the vector space isand the norm is the gauge ofThe proof consists in showing that the required estimate is true with large probability for two independent copies of the normed spaceis an absolute extensor.is not homeomorphic to a Hilbert cube.
Banach–Mazur gameBanach–Mazur theoremmathematicalfunctional analysisdistancenormed spacesisometrycompact metric spaceoperator normF. John's theoremEuclidean norm L p {\displaystyle L^{p}} spacespolytopesHilbert cubeCompact spaceGeneral linear groupEncyclopedia of MathematicsEMS PressTomczak-Jaegermann, NicoleBanach spaceAsplundBanachBanach latticeGrothendieck HilbertInner product spacePolarization identityPolynomiallyReflexiveL-semi-inner productStrictlyUniformlyUniformly smoothInjectiveProjectiveTensor productof Hilbert spacesBarrelledCompleteF-spaceFréchetLocally convexMinkowski functionalsMackeyMetrizableNormedQuasinormedStereotypeDual spaceDual normOperatorUltraweakStrongUltrastrongUniform convergenceLinear operatorsAdjointBilinearsesquilinearBoundedClosedCompacton Hilbert spacesContinuousDensely definedkernelHilbert–SchmidtFunctionalspositivePseudo-monotoneNormalNuclearSelf-adjointStrictly singularTrace classTransposeUnitaryOperator theoryBanach algebrasC*-algebrasOperator spaceSpectrumC*-algebraradiusSpectral theoryof ODEsSpectral theoremPolar decompositionSingular value decompositionAnderson–KadecBanach–AlaogluBanach–MazurBanach–SaksBanach–Schauder (open mapping)Banach–Steinhaus (Uniform boundedness)Bessel's inequalityCauchy–Schwarz inequalityClosed graphClosed rangeEberlein–ŠmulianFreudenthal spectralGelfand–MazurGelfand–NaimarkGoldstineHahn–Banachhyperplane separationKrein–MilmanMackey–ArensMazur's lemmaM. Riesz extensionParseval's identityRiesz's lemmaRiesz representationSchauder fixed-pointAbstract Wiener spaceBanach manifoldbundleBochner spaceConvex seriesDifferentiation in Fréchet spacesDerivativesGateauxfunctionalholomorphicIntegralsBochnerDunfordGelfand–PettisregulatedPaley–WienerFunctional calculusMeasuresLebesgueProjection-valuedVectorWeaklyStronglyAbsolutely convexAbsorbingAffineBalanced/CircledConvexConvex cone (subset)Linear cone (subset)RadialRadially convex/Star-shapedSymmetricZonotopeAffine hullAlgebraic interior (core)Bounding pointsConvex hullExtreme pointInteriorLinear spanMinkowski additionAbsolute continuity AC b a ( Σ ) {\displaystyle ba(\Sigma )} c spaceBanach coordinate BKBesov B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbb {R} )} Birnbaum–OrliczBounded variation BVBs spaceContinuous C(K) with K compact HausdorffHardy HpMorrey–Campanato L λ , p ( Ω ) {\displaystyle L^{\lambda ,p}(\Omega )} Schwartz S ( R n ) {\displaystyle S\left(\mathbb {R} ^{n}\right)} Segal–Bargmann FSequence spaceSobolev Wk,pSobolev inequalityTriebel–LizorkinWiener amalgam W ( X , L p ) {\displaystyle W(X,L^{p})} Differential operatorFinite element methodMathematical formulation of quantum mechanicsOrdinary Differential Equations (ODEs)Validated numericstopicsglossaryHölderOrliczSchwartzSobolevTopological vectorSeparableUniform boundedness principleMin–maxUnboundedBanach algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theoryTopological vector spacesCompletenessContinuous linear operatorLinear functionalFréchet spaceLinear mapLocally convex spaceMetrizabilityOperator topologiesTopological vector spaceVector spaceClosed graph theoremF. Riesz'sVector-valued Hahn–BanachOpen mapping (Banach–Schauder)Bounded inverseUniform boundedness (Banach–Steinhaus)Bilinear operatorAlmost openDiscontinuousTopological homomorphismLinearSeminormSublinear functionAbsolutely convex/diskAbsorbing/RadialBanach disksComplemented subspacePrevalent/ShyB-complete/PtakCountablyBK-spaceUltra-BornologicalBraunerConvenient(DF)-spaceDistinguishedFK-AK spaceFK-spaceGrothendieckInfrabarreledInterpolation spaceK-spaceLB-spaceLF-space(Pseudo)MetrizableMontelQuasibarrelledQuasi-completeSemi-completeQuasi-UltrabarrelledWebbedWith the approximation property