Gelfand–Mazur theorem

In operator theory, the Gelfand–Mazur theorem is a theorem named after Israel Gelfand and Stanisław Mazur which states that a Banach algebra with unit over the complex numbers in which every nonzero element is invertible is isometrically isomorphic to the complex numbers, i. e., the only complex Banach algebra that is a division algebra is the complex numbers C. The theorem follows from the fact that the spectrum of any element of a complex Banach algebra is nonempty: for every element a of a complex Banach algebra A there is some complex number λ such that λ1 − a is not invertible.This is a consequence of the complex-analyticity of the resolvent function.By assumption, λ1 − a = 0.This gives an isomorphism from A to C. The theorem can be strengthened to the claim that there are (up to isomorphism) exactly three real Banach division algebras: the field of reals R, the field of complex numbers C, and the division algebra of quaternions H. This result was proved first by Stanisław Mazur alone, but it was published in France without a proof, when the author refused the editor's request to shorten his proof.Gelfand (independently) published a proof of the complex case a few years later.
operator theorytheoremIsrael GelfandStanisław MazurBanach algebracomplex numbersinvertibleisometricallyisomorphicdivision algebraspectrumresolventquaternionsRudin, WalterMcGraw-Hill Science/Engineering/MathFunctional analysistopicsglossaryBanachFréchetHilbertHölderNuclearOrliczSchwartzSobolevTopological vectorBarrelledCompleteLocally convexReflexiveSeparableHahn–BanachRiesz representationClosed graphUniform boundedness principleKrein–MilmanMin–maxGelfand–NaimarkBanach–AlaogluAdjointBoundedCompactHilbert–SchmidtNormalTrace classTransposeUnboundedUnitaryC*-algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsFunctional calculusIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theorySpectral theory*-algebrasInvolution/*-algebraB*-algebraNoncommutative topologyProjection-valued measureSpectral radiusOperator spaceGelfand–Naimark theoremGelfand representationPolar decompositionSingular value decompositionSpectral theoremSpectral theory of normal C*-algebrasIsospectraloperatorHermitian/Self-adjointKrein–Rutman theoremNormal eigenvalueSpectral asymmetrySpectral gapDecomposition of a spectrumContinuousDirect integralDiscreteSpectral abscissaBorel functional calculusMin-max theoremPositive operator-valued measureRiesz projectorRigged Hilbert spaceSpectral theory of compact operatorsAmenable Banach algebraApproximate identityBanach function algebraDisk algebraNuclear C*-algebraUniform algebraAlon–Boppana boundBauer–Fike theoremNumerical rangeSchur–Horn theoremDirac spectrumEssential spectrumPseudospectrumStructure spaceShilov boundaryAbstract index groupBanach algebra cohomologyCohen–Hewitt factorization theoremExtensions of symmetric operatorsFredholm theoryLimiting absorption principleSchröder–Bernstein theorems for operator algebrasSherman–Takeda theoremUnbounded operatorWiener algebraAlmost Mathieu operatorCorona theoremHearing the shape of a drumDirichlet eigenvalueKuznetsov trace formulaLax pairProto-value functionRamanujan graphRayleigh–Faber–Krahn inequalitySpectral geometrySpectral methodSturm–Liouville theorySuperstrong approximationTransfer operatorTransform theoryWeyl lawWiener–Khinchin theorem