Banach algebra cohomology

In mathematics, Banach algebra cohomology of a Banach algebra with coefficients in a bimodule is a cohomology theory defined in a similar way to Hochschild cohomology of an abstract algebra, except that one takes the topology into account so that all cochains and so on are continuous.[1][2][3]
mathematicsBanach algebracohomologyHochschild cohomologyabstract algebraAmerican Mathematical SocietyEncyclopedia of MathematicsEMS PressFunctional analysistopicsglossaryBanachFréchetHilbertHölderNuclearOrliczSchwartzSobolevTopological vectorBarrelledCompleteLocally convexReflexiveSeparableHahn–BanachRiesz representationClosed graphUniform boundedness principleKrein–MilmanMin–maxGelfand–NaimarkBanach–AlaogluAdjointBoundedCompactHilbert–SchmidtNormalTrace classTransposeUnboundedUnitaryC*-algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsFunctional calculusIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theory