Krein–Rutman theorem

In functional analysis, the Krein–Rutman theorem is a generalisation of the Perron–Frobenius theorem to infinite-dimensional Banach spaces.[1] It was proved by Krein and Rutman in 1948.be a convex cone such that, i.e. the closure of the setis also known as a total cone.be a non-zero compact operator, and assume that it is positive, meaning that, and that its spectral radiuswith positive eigenvector, meaning that there exists, then de Pagter's theorem[3] asserts thatTherefore, for ideal irreducible operators the assumption
functional analysisPerron–Frobenius theoremBanach spacesBanach spaceconvex conecompact operatorspectral radiuseigenvalueeigenvectortopicsglossaryBanachFréchetHilbertHölderNuclearOrliczSchwartzSobolevTopological vectorBarrelledCompleteLocally convexReflexiveSeparableHahn–BanachRiesz representationClosed graphUniform boundedness principleKrein–MilmanMin–maxGelfand–NaimarkBanach–AlaogluAdjointBoundedCompactHilbert–SchmidtNormalTrace classTransposeUnboundedUnitaryBanach algebraC*-algebraSpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsFunctional calculusIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theorySpectral theory*-algebrasInvolution/*-algebraB*-algebraNoncommutative topologyProjection-valued measureSpectrumOperator spaceGelfand–Mazur theoremGelfand–Naimark theoremGelfand representationPolar decompositionSingular value decompositionSpectral theoremSpectral theory of normal C*-algebrasIsospectraloperatorHermitian/Self-adjointNormal eigenvalueSpectral asymmetrySpectral gapDecomposition of a spectrumContinuousDirect integralDiscreteSpectral abscissaBorel functional calculusMin-max theoremPositive operator-valued measureRiesz projectorRigged Hilbert spaceSpectral theory of compact operatorsAmenable Banach algebraApproximate identityBanach function algebraDisk algebraNuclear C*-algebraUniform algebraAlon–Boppana boundBauer–Fike theoremNumerical rangeSchur–Horn theoremDirac spectrumEssential spectrumPseudospectrumStructure spaceShilov boundaryAbstract index groupBanach algebra cohomologyCohen–Hewitt factorization theoremExtensions of symmetric operatorsFredholm theoryLimiting absorption principleSchröder–Bernstein theorems for operator algebrasSherman–Takeda theoremUnbounded operatorWiener algebraAlmost Mathieu operatorCorona theoremHearing the shape of a drumDirichlet eigenvalueKuznetsov trace formulaLax pairProto-value functionRamanujan graphRayleigh–Faber–Krahn inequalitySpectral geometrySpectral methodSturm–Liouville theorySuperstrong approximationTransfer operatorTransform theoryWeyl lawWiener–Khinchin theorem