Nuclear C*-algebra

In the mathematical field of functional analysis, a nuclear C*-algebra is a C*-algebra A such that for every C*-algebra B the injective and projective C*-cross norms coincides on the algebraic tensor product A⊗B and the completion of A⊗B with respect to this norm is a C*-algebra.This property was first studied by Takesaki (1964) under the name "Property T", which is not related to Kazhdan's property T. Nuclearity admits the following equivalent characterizations: The commutative unital C* algebra of (real or complex-valued) continuous functions on a compact Hausdorff space as well as the noncommutative unital algebra of n×n real or complex matrices are nuclear.[1]
functional analysisC*-algebrainjectiveprojectivecross normsKazhdan's property Tcompletely positive mapnoncommutativepartitions of unityenveloping von Neumann algebraamenableBanach algebraCuntz algebraconditional expectationcontinuous functionscompactHausdorff spaceExact C*-algebraInjective tensor productNuclear spaceProjective tensor productStack ExchangeConnes, AlainAnnals of MathematicsEffros, Edward G.Cambridge University PressSpringer-VerlagTopological tensor productsnuclear spacesAuxiliary normed spacesTensor productTopological tensor productof Hilbert spacesTopologiesInductive tensor productFredholm determinantFredholm kernelHilbert–Schmidt operatorHypocontinuityIntegralNuclearbetween Banach spacesTrace classGrothendieck trace theoremSchwartz kernel theoremtopicsglossaryBanachFréchetHilbertHölderOrliczSchwartzSobolevTopological vectorBarrelledCompleteLocally convexReflexiveSeparableHahn–BanachRiesz representationClosed graphUniform boundedness principleKrein–MilmanMin–maxGelfand–NaimarkBanach–AlaogluAdjointBoundedHilbert–SchmidtNormalTransposeUnboundedUnitarySpectrum of a C*-algebraOperator algebraGroup algebra of a locally compact groupVon Neumann algebraInvariant subspace problemMahler's conjectureHardy spaceSpectral theory of ordinary differential equationsHeat kernelIndex theoremCalculus of variationsFunctional calculusIntegral linear operatorJones polynomialTopological quantum field theoryNoncommutative geometryRiemann hypothesisDistributionGeneralized functionsApproximation propertyBalanced setChoquet theoryWeak topologyBanach–Mazur distanceTomita–Takesaki theorySpectral theory*-algebrasInvolution/*-algebraB*-algebraNoncommutative topologyProjection-valued measureSpectrumSpectral radiusOperator spaceGelfand–Mazur theoremGelfand–Naimark theoremGelfand representationPolar decompositionSingular value decompositionSpectral theoremSpectral theory of normal C*-algebrasIsospectraloperatorHermitian/Self-adjointKrein–Rutman theoremNormal eigenvalueSpectral asymmetrySpectral gapDecomposition of a spectrumContinuousDirect integralDiscreteSpectral abscissaBorel functional calculusMin-max theoremPositive operator-valued measureRiesz projectorRigged Hilbert spaceSpectral theory of compact operatorsAmenable Banach algebraApproximate identityBanach function algebraDisk algebraUniform algebraAlon–Boppana boundBauer–Fike theoremNumerical rangeSchur–Horn theoremDirac spectrumEssential spectrumPseudospectrumStructure spaceShilov boundaryAbstract index groupBanach algebra cohomologyCohen–Hewitt factorization theoremExtensions of symmetric operatorsFredholm theoryLimiting absorption principleSchröder–Bernstein theorems for operator algebrasSherman–Takeda theoremUnbounded operatorWiener algebraAlmost Mathieu operatorCorona theoremHearing the shape of a drumDirichlet eigenvalueKuznetsov trace formulaLax pairProto-value functionRamanujan graphRayleigh–Faber–Krahn inequalitySpectral geometrySpectral methodSturm–Liouville theorySuperstrong approximationTransfer operatorTransform theoryWeyl lawWiener–Khinchin theorem