Hot Neptune

[5] If these planets formed ex situ, i.e., by migrating to their current locations while growing, they may contain large quantities of frozen volatiles and amorphous ices.[3] Yet, regardless of the mode of formation, hot Neptunes should contain large fractions (by mass) of gases, primarily hydrogen and helium, which also account for most of their volume.[6][7] LTT 9779 b (Cuancoá) is the first ultra-hot Neptune discovered with an orbital period of 19 hours and an atmospheric temperature of over 1700 degrees Celsius.Being so close to its star and with a mass around twice that of Neptune, its atmosphere should have evaporated into space so its existence requires an unusual explanation.It orbits Vega, an A-class star, every 2.43 days, and with a temperature of about 2500 degrees Celsius would be the second-hottest planet on record if confirmed.
Artist's conception of a hot Neptune
giant planetNeptuneUranusGliese 436 bexoplanetMilky Wayin situtransitingplanetsHAT-P-11bMu Arae cKepler-56bMercuryvolatilesamorphous icesrefractory materialsLTT 9779 bHelium planetHot JupiterMini-NeptuneNeptunian desertOcean worldHycean planetSuper-EarthBibcodeCentauri DreamsPlanetDefinitionPlanetary scienceExoplanet orbital and physical parametersMethods of detecting exoplanetsPlanetary systemPlanet-hosting starsTerrestrialCarbon planetCoreless planetDesert planetDwarf planetIce planetIron planetLava planetMega-EarthSub-EarthGaseousEccentric JupiterGas giantIce giantSuper-JupiterSuper-NeptuneSuper-puffUltra-hot JupiterUltra-hot NeptuneBlanetBrown dwarfChthonian planetCircumbinary planetCircumtriple planetDisrupted planetDouble planetEcumenopolisEyeball planetMesoplanetPlanemoPlanetesimalProtoplanetPulsar planetSub-brown dwarfSub-NeptuneToroidal planetUltra-cool dwarfUltra-short period planet (USP)Formation and evolutionAccretionAccretion diskAsteroid beltCircumplanetary diskCircumstellar discCircumstellar envelopeCosmic dustDebris diskDetached objectExozodiacal dustExtraterrestrial materialsExtraterrestrial sample curationGiant-impact hypothesisGravitational collapseHills cloudInternal structureInterplanetary dust cloudInterplanetary mediumInterplanetary spaceInterstellar cloudInterstellar dustInterstellar mediumKuiper beltList of interstellar and circumstellar moleculesMolecular cloudNebular hypothesisOort cloudOuter spacePlanetary migrationProtoplanetary diskRing systemRubble pileSample-return missionScattered discStar formationSystemsExocometInterstellarExomoonTidally detachedRogue planetPulsarDetectionAstrometryMicrolensingPolarimetryRadial velocityTransit-timing variationHabitabilityAstrobiologyAstrooceanographyCircumstellar habitable zoneEarth analogExtraterrestrial liquid waterGalactic habitable zoneHabitability of binary star systemsHabitability of F-type main-sequence star systemsHabitability of K-type main-sequence star systemsHabitability of natural satellitesHabitability of neutron star systemsHabitability of red dwarf systemsHabitability of yellow dwarf systemsHabitable zone for complex lifeList of potentially habitable exoplanetsTholinSuperhabitable planetNearby Habitable SystemsExoplanet Data ExplorerExtrasolar Planets EncyclopaediaNASA Exoplanet ArchiveNASA Star and Exoplanet DatabaseOpen Exoplanet CatalogueHost starsMultiplanetary systemsStars with proto-planetary discsExoplanetsDiscoveriesExtremesFirstsNearestLargestHeaviestTerrestrial candidatesKeplerPotentially habitableProper namesbefore 20002000–2009Carl Sagan InstituteExoplanet naming conventionExoplanetary Circumstellar Environments and Disk ExplorerExtragalactic planetExtrasolar planets in fictionGeodynamics of terrestrial exoplanetsNexus for Exoplanet System ScienceSmall planet radius gapSudarsky's gas giant classificationDiscoveries of exoplanetsSearch projects