ISKRA lasers

The main use for both lasers being the investigation into inertial confinement fusion, high energy density physics and nuclear weapons research.The Russian laser fusion program was first initiated on the suggestion of Andrei Sakharov in 1962 concerning the possibility that lasers may be capable of achieving the conditions for fusion in imploding spherically symmetrical fuel capsules.The ISKRA-4 laser is a spatially filtered (image relayed) 8 beam photolytically pumped iodine gas laser capable of producing laser pulse energies of around 2 kJ (pulsewidth of about 1 ns) at its fundamental emission wavelength of 1.315 micrometers, though it is also capable of operating in a frequency doubled configuration where it emits light at 658 nm with a pulse energy of around 500 J. ISKRA-4 produced its first thermonuclear neutrons from imploding DT fuel capsules in 1981.The ISKRA-5 laser is a spatially filtered (image relayed) 12 beam photolytically pumped iodine gas laser capable of producing laser pulse energies of around 30 kJ and peak pulse powers of around 100 terawatts (pulsewidth about 0.3 ns) at its fundamental emission wavelength of 1.315 micrometers.[1] ISKRA-6 is a laser under investigation for future construction by VNIIEF which would be in the near-NIF and LMJ class of extremely high energy, high power frequency tripled Nd:glass lasers used to access the ignition regime of imploding DT fusion fuel capsules for nuclear weapons research.
lasersSoviet UnionRFNC-VNIIEFArzamas-16inertial confinement fusionhigh energy density physicsnuclear weaponsAndrei Sakharoviodinemicrometersfrequency doubledneutronsList of laser typesFusion powerNuclear fusionBurning plasmaTimelineList of experimentsList of technologiesCommercialAneutronicNuclear powerNuclear reactorAtomic nucleusFusion energy gain factorLawson criterionMagnetohydrodynamicsNeutronPlasmaGravitationalAlpha processTriple-alpha processCNO cycleHelium flashremnantsProton–proton chainCarbon-burningLithium burningNeon-burningOxygen-burningSilicon-burningR-processS-processMagneticField-reversed configurationLevitated dipoleMagnetic mirrorBumpy torusDense plasma focusReversed fieldStellaratorTokamakSphericalSpheromakDynomakToroidal solenoidMagneto-inertialMagnetized linerMagnetized targetInertialBubble (acoustic)Laser-drivenIon-drivenElectrostaticPolywellColliding beamMetal latticeMuon-catalyzedPyroelectricDevices,experimentsMagneticconfinementSTOR-MAlcator C-ModDIII-DElectric TokamakPegasusRiggatronSUNISTADITYACOMPASSASDEX UpgradeTEXTORIGNITORISTTOKMAST-UModel CHeliotron JWendelstein 7-ASWendelstein 7-XUragan-2MPerhapsatronSceptreMirrorAstronLockheed Martin CFRTrisopsSPECTORFusion EngineInertialconfinementCyclopsLong pathGEKKO XIIAsterix IV (PALS)LULI2000VulcanZ machineInternational Fusion Materials Irradiation FacilityITER Neutral Beam Test FacilitySolid-state lasersSemiconductor laserYttrium aluminium garnetGd:YAGgain mediaRuby laserYttrium iron garnetTerbium gallium garnetTi:sapphire laserSolid-state dye laserYttrium lithium fluorideNeodymium-doped yttrium lithium fluorideYttrium orthovanadateNeodymium-doped yttrium orthovanadateDiode-pumped solid-state laserFiber laserFigure-8 laserDisk laserF-centerTrident laserZEUS-HLONS (HMMWV Laser Ordnance Neutralization System)Nova (laser)Cyclops laserJanus laserArgus laserShiva laserLaboratory for Laser EnergeticsLaser MégajouleMercury laserVulcan laserList of petawatt lasersList of laser articlesList of laser applicationsLaser acronymsChemical laserDye laserBubbleLiquid-crystalGas laserCarbon dioxideExcimerHelium–neonNitrogenFree-electron laserLaser diodeSolid-state laserTi-sapphireX-ray laserLaser physicsActive laser mediumAmplified spontaneous emissionContinuous waveLaser ablationLaser linewidthLasing thresholdPopulation inversionUltrashort pulseBeam expanderBeam homogenizerChirped pulse amplificationGain-switchingGaussian beamInjection seederLaser beam profilerM squaredMode lockingMultiple-prism grating laser oscillatorOptical amplifierOptical cavityOptical isolatorOutput couplerQ-switching