Quantum simulator

[12] Better computational tools are needed to understand and rationally design materials whose properties are believed to depend on the collective quantum behavior of hundreds of particles.It has passed a series of important benchmarking tests that indicate a capability to solve problems in material science that are impossible to model on conventional computers.The trapped-ion simulator consists of a tiny, single-plane crystal of hundreds of beryllium ions, less than 1 millimeter in diameter, hovering inside a device called a Penning trap.Carefully timed microwave and laser pulses then caused the qubits to interact, mimicking the quantum behavior of materials otherwise very difficult to study in the laboratory.[20] Kim et al., extended the trapped ion quantum simulator to 3 spins, with global antiferromagnetic Ising interactions featuring frustration and showing the link between frustration and entanglement[21] and Islam et al., used adiabatic quantum simulation to demonstrate the sharpening of a phase transition between paramagnetic and ferromagnetic ordering as the number of spins increased from 2 to 9.Major aims of these experiments include identifying low-temperature phases or tracking out-of-equilibrium dynamics for various models, problems which are theoretically and numerically intractable.[35] Several important recent results include the realization of a Mott insulator in a driven-dissipative Bose-Hubbard system and studies of phase transitions in lattices of superconducting resonators coupled to qubits.
In this photograph of a quantum simulator crystal the ions are fluorescing , indicating the qubits are all in the same state (either "1" or "0"). Under the right experimental conditions, the ion crystal spontaneously forms this nearly perfect triangular lattice structure. Credit: Britton/NIST
Trapped ion quantum simulator illustration: The heart of the simulator is a two-dimensional crystal of beryllium ions (blue spheres in the graphic); the outermost electron of each ion is a quantum bit (qubit, red arrows). The ions are confined by a large magnetic field in a device called a Penning trap (not shown). Inside the trap the crystal rotates clockwise. Credit: Britton/NIST
are fluorescinglatticequantum systemphysicsquantum computersquantum computerYuri ManinRichard FeynmanTuring machinequantum Turing machineuniversal quantum computercomputability theorycomplexity classesquantum supremacyquantum bitsultracold quantum gaseslow-temperature physicsmany-body physicsquantum mechanicsquantum behaviorsuperpositionquantum particleentanglementIon traptrapped-ionberyllium ionsPenning trapelectronlaser pulseslattice spacingphase transitionultracold atombosonsfermionsoptical latticesRydberg atomoptical tweezersHubbardtransverse-field IsingHaldane modelHarper-Hofstadter modelquantum annealersadiabatic quantum computingquantum phase transitionsMott insulatorBose-Hubbard systemHamiltonian simulationQuantum computingpublic domain materialNational Institute of Standards and TechnologyBibcodeFeynman, RichardCiteSeerXEdwards, E. E.Edwards, E.E.Quantum information scienceDiVincenzo's criteriaNISQ eratimelineQuantum informationQuantum programmingphysical vs. logicalQuantum processorscloud-basedBell'sEastin–KnillGleason'sGottesman–KnillHolevo'sNo-broadcastingNo-cloningNo-communicationNo-deletingNo-hidingNo-teleportationQuantum speed limitThresholdSolovay–KitaevPurificationClassical capacityentanglement-assistedquantum capacityEntanglement distillationMonogamy of entanglementQuantum channelquantum networkQuantum teleportationquantum gate teleportationSuperdense codingQuantum cryptographyPost-quantum cryptographyQuantum coin flippingQuantum moneyQuantum key distributionSARG04other protocolsQuantum secret sharingQuantum algorithmsAmplitude amplificationBernstein–VaziraniBoson samplingDeutsch–JozsaGrover'sHidden subgroupQuantum annealingQuantum countingQuantum Fourier transformQuantum optimizationQuantum phase estimationShor'sSimon'sQuantumcomplexity theoryPostBQPQuantum volumeRandomized benchmarkingRelaxation timescomputing modelsAdiabatic quantum computationContinuous-variable quantum informationOne-way quantum computercluster stateQuantum circuitquantum logic gateQuantum machine learningquantum neural networkTopological quantum computerQuantumerror correctionquantum convolutionalstabilizerBacon–ShorSteaneQuantum opticsCavity QEDCircuit QEDLinear optical QCKLM protocolUltracold atomsNeutral atom QCTrapped-ion QCKane QCSpin qubit QCNV centerNMR QCSuperconductingCharge qubitFlux qubitPhase qubitTransmonQuantumprogrammingOpenQASMQiskitIBM QXForest/Rigetti QCSlibquantummany others...Emerging technologiesQuantumalgorithmsamplifiercellular automatachannelcircuitcomplexity theorycomputingcryptographypost-quantumdynamicselectronicserror correctionfinite automataimage processingimaginginformationkey distributionlogic clocklogic gatemachinemachine learningmetamaterialnetworkneural networkopticsprogrammingsensingteleportationAcoustic levitationAnti-gravityCloak of invisibilityDigital scent technologyForce fieldPlasma windowImmersive virtual realityMagnetic refrigerationPhased-array opticsThermoacoustic heat engine