Strange matter

In extreme environments, strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers, as in the hypothetical strange stars.In particle physics and astrophysics, the term 'strange matter' is used in two different contexts, one broader and the other more specific and hypothetical:[1][2] In the general context, strange matter might occur inside neutron stars, if the pressure at their core is high enough to provide a sufficient gravitational force (i.e. above the critical pressure).The Pauli exclusion principle forbids fermions such as quarks from occupying the same position and energy level.However, it is difficult to know whether hybrid stars really exist in nature because physicists currently have little idea of the likely value of the critical pressure or density.But a more precise estimate is not yet available, because the strong interaction that governs the behavior of quarks is mathematically intractable, and numerical calculations using lattice QCD are currently blocked by the fermion sign problem.
quark matterstrange quarksneutron starsfemtometersstrangeletsstrange starscolor superconductingmatterNuclear matterneutronsprotonsdown quarkscondensed form of matterquarksparticle physicsastrophysicslaws of natureWittenmetastabledegeneracy pressurePauli exclusion principleup quarksnucleonsstrong interactionlattice QCDsign problemstrange matter hypothesisExotic matterQuark starStrangeness and quark–gluon plasmaStrangeletQCD matterBibcodeWitten, EdwardStates of matterLiquidSupercritical fluidPlasmaBose–Einstein condensateFermionic condensateDegenerate matterQuantum HallRydberg matterSuperfluidSupersolidPhotonic moleculeQuark–gluon plasmaColor-glass condensateColloidCrystalLiquid crystalTime crystalQuantum spin liquidProgrammable matterDark matterAntimatterAntiferromagnetFerrimagnetFerromagnetString-net liquidSuperglassPhase transitionsBoilingBoiling pointCondensationCritical lineCritical pointCrystallizationDepositionEvaporationFlash evaporationFreezingChemical ionizationIonizationLambda pointMeltingMelting pointRecombinationRegelationSaturated fluidSublimationSupercoolingTriple pointVaporizationVitrificationEnthalpy of fusionEnthalpy of sublimationEnthalpy of vaporizationLatent heatLatent internal energyTrouton's ruleVolatilityBaryonic matterBinodalCompressed fluidCooling curveEquation of stateLeidenfrost effectMacroscopic quantum phenomenaMpemba effectOrder and disorder (physics)SpinodalSuperconductivitySuperheated vaporSuperheatingThermo-dielectric effectStellar corecollapseFormationEvolutionStructureMetallicityStellar physicsStellar plasmaSupergiantCataclysmic variable starBinary starX-ray binarySuper soft X-ray sourceNuclear fusionSurface fusionNucleosynthesisR-processRP-processSupernova nucleosynthesisAccretionBondi accretionElectron captureCarbon detonationdeflagrationGamma-ray burstHelium flashOrbital decayGravitational collapseChandrasekhar limitTolman–Oppenheimer–Volkoff limitSupernovaeType IaType Ib and IcType IIPair instabilityHypernovaQuark-novaNebulaRemnantCompact and exotic objectsNeutron starPulsarQuasarMagnetarRadio-quietWhite dwarfBlack holeCollapsarShell collapsarExotic starElectroweak starObservational timelineElementary particlesProtonNeutronElectronNeutrinoFundamental interactionsWeak interactionGravitationPair productionInverse beta decay (electron capture)Electron degeneracy pressureQuantum theoryQuantum mechanicsIntroductionBasic conceptsQuantum electrodynamicsQuantum hydrodynamicsQuantum chromodynamics (QCD)Color confinementDeconfinementNeutron matterPreon matterAstronomyNuclear astrophysicsPhysical cosmologyPhysics of shock waves