Proca action

In physics, specifically field theory and particle physics, the Proca action describes a massive spin-1 field of mass m in Minkowski spacetime.The Proca equation is involved in the Standard Model and describes there the three massive vector bosons, i.e. the Z and W bosons.This article uses the (+−−−) metric signature and tensor index notation in the language of 4-vectors.The Euler–Lagrange equation of motion for this case, also called the Proca equation, is: which is equivalent to the conjunction of[3] with (in the massive case) which may be called a generalized Lorenz gauge condition.For non-zero sources, with all fundamental constants included, the field equation is: WhenIn the vector calculus notation, the source free equations are: andQuantizing the Proca action requires the use of second class constraints.
Quantum field theoryFeynman diagramHistoryField theoryElectromagnetismWeak forceStrong forceQuantum mechanicsSpecial relativityGeneral relativityGauge theoryYang–Mills theorySymmetriesSymmetry in quantum mechanicsC-symmetryP-symmetryT-symmetryLorentz symmetryPoincaré symmetryGauge symmetryExplicit symmetry breakingSpontaneous symmetry breakingNoether chargeTopological chargeAnomalyBackground field methodBRST quantizationCorrelation functionCrossingEffective actionEffective field theoryExpectation valueLattice field theoryLSZ reduction formulaPartition functionPath Integral FormulationPropagatorQuantizationRegularizationRenormalizationVacuum stateWick's theoremWightman axiomsDirac equationKlein–Gordon equationWheeler–DeWitt equationBargmann–Wigner equationsSchwinger-Dyson equationRenormalization group equationStandard ModelQuantum electrodynamicsElectroweak interactionQuantum chromodynamicsHiggs mechanismString theorySupersymmetryTechnicolorTheory of everythingQuantum gravityAndersonAnselmBargmannBecchiBelavinBerezinBjorkenBleuerBogoliubovBrodskyBuchholzCachazoCallanColemanConnesDashenDeWittDoplicherEnglertFaddeevFeynmanFramptonFritzschFröhlichFredenhagenGlashowGell-MannGoldstoneGribovGuralnikHeisenberg't HooftIliopoulosIvanenkoJackiwJona-LasinioJordanKällénKendallKinoshitaKlebanovKontsevichKreimerKuraevLandauLehmannLeutwylerLipatovŁopuszańskiLüdersMaianiMajoranaMaldacenaMatsubaraMigdalMøllerNaimarkNishijimaOppenheimerOsbornOsterwalderParisiPecceiPeskinPlefkaPolchinskiPolyakovPomeranchukRubakovRuelleSakuraiSchraderSchwarzSchwingerSeibergSemenoffShifmanShirkovSkyrmeSommerfieldStueckelbergSudarshanSymanzikTakahashiThirringTomonagaTyutinVainshteinVeltmanVenezianoVirasoroWeinbergWeisskopfWentzelWetterichWightmanWignerWilczekWilsonWittenYukawaZamolodchikovZimmermannZinn-JustinZuminophysicsparticle physicsmassiveMinkowski spacetimerelativistic wave equationAlexandru Procavector bosonsmetric signaturetensor index notation4-vectors4-potentialelectric potentialmagnetic potentialfour-vectorLagrangian densityspeed of light in vacuumreduced Planck constant4-gradientEuler–Lagrange equationLorenz gauge conditionMaxwell's equationsvector calculusD'Alembert operatorgauge-fixedStueckelberg actionsecond class constraintsElectromagnetic fieldPhotonVector bosonRelativistic wave equationsKlein-Gordon equationQuantum field theoriesAlgebraic QFTAxiomatic QFTConformal field theoryNoncommutative QFTQFT in curved spacetimeSupergravityThermal QFTTopological QFTTwo-dimensional conformal field theoryBorn–InfeldEuler–HeisenbergGinzburg–LandauNon-linear sigmaQuartic interactionScalar electrodynamicsScalar chromodynamicsYang–MillsYang–Mills–Higgs2D Yang–MillsBullough–DoddGross–NeveuSine-GordonThirring–Wess2D free massless scalarLiouvilleMinimalWess–Zumino–Witten4D N = 1N = 1 super Yang–MillsSeiberg–WittenSuper QCDWess–Zumino6D (2,0)N = 4 super Yang–MillsPure 4D N = 14D N = 8Higher dimensionalType IType IIAType IIBChern–SimonsChiralNambu–Jona-LasinioCasimir effectCosmic stringLoop quantum gravityLoop quantum cosmologyOn shell and off shellQuantum chaosQuantum dynamicsQuantum foamQuantum fluctuationsQuantum hadrodynamicsQuantum hydrodynamicsQuantum informationQuantum information scienceQuantum logicQuantum thermodynamics