Grignard reagent

Grignard compounds are popular reagents in organic synthesis for creating new carbon–carbon bonds.For example, when reacted with another halogenated compound R'−X' in the presence of a suitable catalyst, they typically yield R−R' and the magnesium halide MgXX' as a byproduct; and the latter is insoluble in the solvents normally used.Instead, they are normally handled as solutions in solvents such as diethyl ether or tetrahydrofuran using air-free techniques.Traditionally Grignard reagents are prepared by treating an organic halide (normally organobromine) with magnesium metal.Water and air, which rapidly destroy the reagent by protonolysis or oxidation, are excluded.[2] As is common for reactions involving solids and solution, the formation of Grignard reagents is often subject to an induction period.[3] Most organohalides will work, but carbon-fluorine bonds are generally unreactive, except with specially activated magnesium (through Rieke metals).Typically the reaction to form Grignard reagents involves the use of magnesium ribbon.Many methods have been developed to weaken this passivating layer, thereby exposing highly reactive magnesium to the organic halide.Mechanical methods include crushing of the Mg pieces in situ, rapid stirring, and sonication.Furthermore, the side-products are innocuous: The amount of Mg consumed by these activating agents is usually insignificant.A small amount of mercuric chloride will amalgamate the surface of the metal, enhancing its reactivity.[11] This method offers the advantage that the Mg transfer tolerates many functional groups.The reductive transmetalation achieves:[13] Because Grignard reagents are so sensitive to moisture and oxygen, many methods have been developed to test the quality of a batch.Typical tests involve titrations with weighable, anhydrous protic reagents, e.g. menthol in the presence of a color-indicator.In cases where the Grignard reagent is adding to an aldehyde or a prochiral ketone, the Felkin-Anh model or Cram's Rule can usually predict which stereoisomer will be formed.With easily deprotonated 1,3-diketones and related acidic substrates, the Grignard reagent RMgX functions merely as a base, giving the enolate anion and liberating the alkane RH.Grignard reagents also react with many "carbonyl-like" compounds and other electrophiles: Grignard reagents are nucleophiles in nucleophilic aliphatic substitutions for instance with alkyl halides in a key step in industrial Naproxen production: In the Bruylants reaction, a nitrile can be replaced by the Grignard nucleophile, rather than the Grigard attacking the nitrile to form an imino structure.[17] Grignard reagents serve as a base for non-protic substrates (this scheme does not show workup conditions, which typically includes water).Grignard reagents react with 1,4-dioxane to give the diorganomagnesium compounds and insoluble coordination polymer MgX2(dioxane)2 and (R = organic group, X = halide): This reaction exploits the Schlenk equilibrium, driving it toward the right.Grignard reagents react with organolithium compounds to give ate complexes (Bu = butyl):[20] Grignard reagents do not typically react with organic halides, in contrast with their high reactivity with other main group halides.In the presence of metal catalysts, however, Grignard reagents participate in C-C coupling reactions.For example, nonylmagnesium bromide reacts with methyl p-chlorobenzoate to give p-nonylbenzoic acid, in the presence of Tris(acetylacetonato)iron(III) (Fe(acac)3), after workup with NaOH to hydrolyze the ester, shown as follows.Without the Fe(acac)3, the Grignard reagent would attack the ester group over the aryl halide.Additionally, an effective catalyst for the couplings of alkyl halides is the Gilman catalyst lithium tetrachlorocuprate (Li2CuCl4), prepared by mixing lithium chloride (LiCl) and copper(II) chloride (CuCl2) in THF.The simple oxidation of Grignard reagents to give alcohols is of little practical importance as yields are generally poor.In contrast, two-step sequence via a borane (vide supra) that is subsequently oxidized to the alcohol with hydrogen peroxide is of synthetic utility.Adding just the Grignard and the alkene does not result in a reaction demonstrating that the presence of oxygen is essential.In the Boord olefin synthesis, the addition of magnesium to certain β-haloethers results in an elimination reaction to the alkene.An example of the Grignard reaction is a key step in the (non-stereoselective) industrial production of Tamoxifen[23] (currently used for the treatment of estrogen receptor positive breast cancer in women):[24]
Usually Grignard reagents are written as R-Mg-X, but in fact the magnesium(II) centre is tetrahedral when dissolved in Lewis basic solvents, as shown here for the bis-adduct of methylmagnesium chloride and THF.
Reactions of Grignard reagents with carbonyls
Reactions of Grignard reagents with carbonyls
Reaction of CH3C(=O)CH(OCH3)2 with H2C=CHMgBr
Reaction of CH 3 C(=O)CH(OCH 3 ) 2 with H 2 C=CHMgBr
Reactions of Grignard reagents with various electrophiles
Reactions of Grignard reagents with various electrophiles
Naproxen synthesis
Naproxen synthesis
4-nonylbenzoicacid synthesis using a grignard reagent
4-nonylbenzoicacid synthesis using a grignard reagent
Grignard oxygen oxidation example
Grignard oxygen oxidation example
Boord olefin synthesis, X = Br, I, M = Mg, Zn
Boord olefin synthesis, X = Br, I, M = Mg, Zn
Tamoxifen production
Tamoxifen production
Lewis basicchemical compoundshalogenmethylmagnesium chloridephenylmagnesium bromideorganomagnesium compoundsorganic synthesiscarbon–carbon bondscatalystdiethyl ethertetrahydrofuranair-free techniquescomplexligandsGrignard reactionVictor GrignardEthersorganomagnesium compoundprotonolysisinduction periodexothermiccarbon-fluorine bondsRieke metalspassivatingmagnesium oxidesonicationIodinemethyl iodide1,2-dibromoethaneethylenemercuric chlorideamalgamateRieke magnesium1,2-Diiodoethanemagnesium anthracenereductionanhydrousmagnesium chloridepotassiumsingle electron transferisopropylmagnesium chloridetransmetalationorganozinc compoundadamantanementholphenanthrolineCoupling reactionelectrophilescarbonylacetalprochiralFelkin-Anh model or Cram's Rulediketonesenolatenucleophilesnucleophilic aliphatic substitutionsalkyl halidesNaproxenBruylants reactionalkoxidesparaformaldehydesalicylaldehydeorganolithium compoundstransmetallationcadmium chloridedialkylcadmium1,4-dioxaneSchlenk equilibriumate complexescoupling reactionsTris(acetylacetonato)iron(III)hydrolyzearyl halidenickel chlorideGilman catalystlithium chloridecopper(II) chlorideKumada-Corriu couplingstyreneshydroperoxidesradicalalkenealcoholBoord olefin synthesiselimination reactionTamoxifenestrogen receptorbreast cancerDibutylmagnesiumHauser baseBibcodeGoogle BooksCRC PressScienceOrganic SynthesesJ. Am. Chem. Soc.Organometallic chemistryCrystal field theoryLigand field theory18-electron ruled electron countPolyhedral skeletal electron pair theoryIsolobal principleπ backbondingDewar–Chatt–Duncanson modelHapticityspin statesAgostic interactionMetal–ligand multiple bondOxidative additionreductive eliminationMigratory insertionβ-hydride eliminationCarbometalationGilman reagentsCyclopentadienyl complexesTransition metal indenyl complexesTransition metal fullerene complexesMetallocenesMetal tetranorbornylsSandwich compoundsHalf sandwich compoundsTransition metal acyl complexesTransition metal carbene complexesTransition metal carbyne complexesTransition metal alkene complexesTransition metal alkyne complexesTransition-metal allyl complexesTransition metal carbidesArene complexes of univalent gallium, indium, and thalliumCarbonylationCativa processMonsanto processOlefin metathesisShell higher olefin processZiegler–Natta processchemistryOrganic chemistryInorganic chemistryBioinorganic chemistryorganic reactionsAddition reactionPolymerizationRearrangement reactionRedox reactionRegioselectivityStereoselectivityStereospecificitySubstitution reactionA valueAlpha effectAnnuleneAnomeric effectAntiaromaticityAromatic ring currentAromaticityBaird's ruleBaker–Nathan effectBaldwin's rulesBema HapothleBeta-silicon effectBicycloaromaticityBredt's ruleBürgi–Dunitz angleCatalytic resonance theoryCharge remote fragmentationCharge-transfer complexClar's ruleConformational isomerismConjugated systemConrotatory and disrotatoryCurtin–Hammett principleDynamic binding (chemistry)Edwards equationEffective molarityElectromeric effectElectron-richElectron-withdrawing groupElectronic effectElectrophileEvelyn effectFlippin–Lodge angleFree-energy relationshipGrunwald–Winstein equationHammett acidity functionHammett equationGeorge S. HammondHammond's postulateHomoaromaticityHückel's ruleHyperconjugationInductive effectKinetic isotope effectLFER solvent coefficients (data page)Marcus theoryMarkovnikov's ruleMöbius aromaticityMöbius–Hückel conceptMore O'Ferrall–Jencks plotNegative hyperconjugationNeighbouring group participation2-Norbornyl cationNucleophileKennedy J. P. OrtonPassive bindingPhosphaethynolatePolar effectPolyfluoreneRing strainΣ-aromaticitySpherical aromaticitySpiroaromaticitySteric effectsSuperaromaticitySwain–Lupton equationTaft equationThorpe–Ingold effectVinylogyWalsh diagramWoodward–Hoffmann rulesWoodward's rulesY-aromaticityYukawa–Tsuno equationZaitsev's ruleΣ-bishomoaromaticityList of organic reactionsAcetoacetic ester synthesisAcyloin condensationAldol condensationAldol reactionAlkane metathesisAlkyne metathesisAlkyne trimerisationAlkynylationAllan–Robinson reactionArndt–Eistert reactionAuwers synthesisAza-Baylis–Hillman reactionBarbier reactionBarton–Kellogg reactionBaylis–Hillman reactionBenary reactionBergman cyclizationBiginelli reactionBingel reactionBlaise ketone synthesisBlaise reactionBlanc chloromethylationBodroux–Chichibabin aldehyde synthesisBouveault aldehyde synthesisBucherer–Bergs reactionBuchner ring expansionCadiot–Chodkiewicz couplingCarbonyl allylationCarbonyl olefin metathesisCastro–Stephens couplingChan rearrangementChan–Lam couplingClaisen condensationClaisen rearrangementClaisen-Schmidt condensationCombes quinoline synthesisCorey–Fuchs reactionCorey–House synthesisCross-coupling reactionCross dehydrogenative couplingCross-coupling partnerDakin–West reactionDarzens reactionDiels–Alder reactionDoebner reactionWulff–Dötz reactionEne reactionEnyne metathesisEthenolysisFavorskii reactionFerrier carbocyclizationFriedel–Crafts reactionFujimoto–Belleau reactionFujiwara–Moritani reactionFukuyama couplingGabriel–Colman rearrangementGattermann reactionGlaser couplingHammick reactionHeck reactionHenry reactionHeterogeneous metal catalyzed cross-couplingHigh dilution principleHiyama couplingHomologation reactionHorner–Wadsworth–Emmons reactionHydrocyanationHydrovinylationHydroxymethylationIvanov reactionJohnson–Corey–Chaykovsky reactionJulia olefinationJulia–Kocienski olefinationKauffmann olefinationKnoevenagel condensationKnorr pyrrole synthesisKolbe–Schmitt reactionKowalski ester homologationKulinkovich reactionKumada couplingLiebeskind–Srogl couplingMalonic ester synthesisMannich reactionMcMurry reactionMeerwein arylationMethylenationMichael reactionMinisci reactionNef isocyanide reactionNef synthesisNegishi couplingNierenstein reactionNitro-Mannich reactionNozaki–Hiyama–Kishi reactionOlefin conversion technologyPalladium–NHC complexPasserini reactionPeterson olefinationPfitzinger reactionPiancatelli rearrangementPinacol coupling reactionPrins reactionQuelet reactionRamberg–Bäcklund reactionRauhut–Currier reactionReformatsky reactionReimer–Tiemann reactionRieche formylationRing-closing metathesisRobinson annulationSakurai reactionSeyferth–Gilbert homologationShapiro reactionSonogashira couplingStetter reactionStille reactionStollé synthesisStork enamine alkylationSuzuki reactionTakai olefinationThermal rearrangement of aromatic hydrocarbonsThorpe reactionUgi reactionUllmann reactionWagner-Jauregg reactionWeinreb ketone synthesisWittig reactionWurtz reactionWurtz–Fittig reactionZincke–Suhl reactionHomologation reactionsHooker reactionKiliani–Fischer synthesisMethoxymethylenetriphenylphosphoraneBamford–Stevens reactionChugaev eliminationCope reactionCorey–Winter olefin synthesisDehydrohalogenationGrieco eliminationHofmann eliminationHydrazone iodinationAzo couplingBartoli indole synthesisBoudouard reactionCadogan–Sundberg indole synthesisDiazonium compoundEsterificationHaloform reactionHegedus indole synthesisHurd–Mori 1,2,3-thiadiazole synthesisKharasch–Sosnovsky reactionLeimgruber–Batcho indole synthesisMukaiyama hydrationNenitzescu indole synthesisOxymercuration reactionReed reactionSchotten–Baumann reactionUllmann condensationWilliamson ether synthesisYamaguchi esterificationBarbier–Wieland degradationBergmann degradationEdman degradationEmde degradationGallagher–Hollander degradationHofmann rearrangementIsosaccharinic acidMarker degradationRuff degradationStrecker degradationVon Braun amide degradationWeerman degradationWohl degradationOrganic redox reactionsAdkins–Peterson reactionAkabori amino-acid reactionAlcohol oxidationAlgar–Flynn–Oyamada reactionAmide reductionAndrussow processAngeli–Rimini reactionAromatizationAutoxidationBaeyer–Villiger oxidationBarton–McCombie deoxygenationBechamp reductionBenkeser reactionBirch reductionBohn–Schmidt reactionBosch reactionBouveault–Blanc reductionBoyland–Sims oxidationCannizzaro reactionCarbonyl reductionClemmensen reductionCollins oxidationCorey–Itsuno reductionCorey–Kim oxidationCriegee oxidationDakin oxidationDavis oxidationDeoxygenationDess–Martin oxidationDNA oxidationElbs persulfate oxidationEschweiler–Clarke reactionÉtard reactionFischer–Tropsch processFleming–Tamao oxidationFukuyama reductionGanem oxidationGlycol cleavageGriesbaum coozonolysisGrundmann aldehyde synthesisHydrogenationHydrogenolysisHydroxylationJones oxidationKolbe electrolysisKornblum oxidationKornblum–DeLaMare rearrangementLeuckart reactionLey oxidationLindgren oxidationLipid peroxidationLombardo methylenationLuche reductionMarkó–Lam deoxygenationMcFadyen–Stevens reactionMeerwein–Ponndorf–Verley reductionMethionine sulfoxideMiyaura borylationMozingo reductionNoyori asymmetric hydrogenationOmega oxidationOppenauer oxidationOxygen rebound mechanismOzonolysisParikh–Doering oxidationPinnick oxidationPrévost reactionReduction of nitro compoundsReductive aminationRiley oxidationRosenmund reductionRubottom oxidationSabatier reactionSarett oxidationSelenoxide eliminationSharpless asymmetric dihydroxylationEpoxidation of allylic alcoholsSharpless epoxidationSharpless oxyaminationStahl oxidationStaudinger reactionStephen aldehyde synthesisSwern oxidationTransfer hydrogenationWacker processWharton reactionWhiting reactionWohl–Aue reactionWolff–Kishner reductionWolffenstein–Böters reactionZinin reactionRearrangement reactions1,2-rearrangement1,2-Wittig rearrangement2,3-sigmatropic rearrangement2,3-Wittig rearrangementAchmatowicz reactionAlkyne zipper reactionAllen–Millar–Trippett rearrangementAllylic rearrangementAlpha-ketol rearrangementAmadori rearrangementAza-Cope rearrangementBaker–Venkataraman rearrangementBamberger rearrangementBanert cascadeBeckmann rearrangementBenzilic acid rearrangementBoekelheide reactionBrook rearrangementCarroll rearrangementCope rearrangementCornforth rearrangementCriegee rearrangementCurtius rearrangementDemjanov rearrangementDi-π-methane rearrangementDimroth rearrangementDivinylcyclopropane-cycloheptadiene rearrangementDowd–Beckwith ring-expansion reactionElectrocyclic reactionFavorskii rearrangementFerrier rearrangementFischer–Hepp rearrangementFries rearrangementFritsch–Buttenberg–Wiechell rearrangementGroup transfer reactionHalogen dance rearrangementHayashi rearrangementHofmann–Martius rearrangementIreland–Claisen rearrangementJacobsen rearrangementLobry de Bruyn–Van Ekenstein transformationLossen rearrangementMcLafferty rearrangementMeyer–Schuster rearrangementMislow–Evans rearrangementMumm rearrangementMyers allene synthesisNazarov cyclization reactionNeber rearrangementNewman–Kwart rearrangementOverman rearrangementOxy-Cope rearrangementPericyclic reactionPinacol rearrangementPummerer rearrangementRing expansion and contractionRupe reactionSchmidt reactionSemipinacol rearrangementSigmatropic reactionSkattebøl rearrangementSmiles rearrangementSommelet–Hauser rearrangementStevens rearrangementStieglitz rearrangementTiffeneau–Demjanov rearrangementVinylcyclopropane rearrangementWagner–Meerwein rearrangementWallach rearrangementWestphalen–Lettré rearrangementWillgerodt rearrangementWolff rearrangementRing forming reactions1,3-Dipolar cycloadditionAnnulationAzide-alkyne Huisgen cycloadditionBaeyer–Emmerling indole synthesisBischler–Möhlau indole synthesisBischler–Napieralski reactionBlum–Ittah aziridine synthesisBobbitt reactionBohlmann–Rahtz pyridine synthesisBorsche–Drechsel cyclizationBucherer carbazole synthesisCamps quinoline synthesisChichibabin pyridine synthesisCook–Heilbron thiazole synthesisCycloadditionDavis–Beirut reactionDe Kimpe aziridine synthesisDebus–Radziszewski imidazole synthesisDieckmann condensationFeist–Benary synthesisFerrario–Ackermann reactionFiesselmann thiophene synthesisFischer indole synthesisFischer oxazole synthesisFriedländer synthesisGewald reactionGraham reactionHantzsch pyridine synthesisHemetsberger indole synthesisHofmann–Löffler reactionIodolactonizationIsay reactionJacobsen epoxidationKnorr quinoline synthesisKröhnke pyridine synthesisLarock indole synthesisMadelung synthesisNiementowski quinazoline synthesisNiementowski quinoline synthesisPaal–Knorr synthesisPaternò–Büchi reactionPechmann condensationPetrenko-Kritschenko piperidone synthesisPictet–Spengler reactionPomeranz–Fritsch reactionPrilezhaev reactionPschorr cyclizationReissert indole synthesisSimmons–Smith reactionSkraup reactionUrech hydantoin synthesisVan Leusen reactionWenker synthesis4+4 Photocycloaddition(4+3) cycloaddition6+4 CycloadditionAza-Diels–Alder reactionBradsher cycloadditionCheletropic reactionConia-ene reactionCyclopropanationDiazoalkane 1,3-dipolar cycloadditionEnone–alkene cycloadditionsHexadehydro Diels–Alder reactionIntramolecular Diels–Alder cycloadditionInverse electron-demand Diels–Alder reactionKetene cycloadditionMcCormack reactionMetal-centered cycloaddition reactionsNitrone-olefin (3+2) cycloadditionOxo-Diels–Alder reactionPauson–Khand reactionPovarov reactionPrato reactionRetro-Diels–Alder reactionStaudinger synthesisTrimethylenemethane cycloadditionVinylcyclopropane (5+2) cycloadditionBamberger triazine synthesisBarton–Zard reactionBernthsen acridine synthesisBoger pyridine synthesisEinhorn–Brunner reactionErlenmeyer–Plöchl azlactone and amino-acid synthesisHantzsch esterHerz reactionLehmstedt–Tanasescu reactionPellizzari reactionRobinson–Gabriel synthesis