Domain of a function

In layman's terms, the domain of a function can generally be thought of as "what x can be".In modern mathematical language, the domain is part of the definition of a function rather than a property of it.In the special case that X and Y are both sets of real numbers, the function f can be graphed in the Cartesian coordinate system.The set of specific outputs the function assigns to elements of X is called its range or image.The image of f is a subset of Y, shown as the yellow oval in the accompanying diagram.If a real function f is given by a formula, it may be not defined for some values of the variable.The two concepts are sometimes conflated as in, for example, the study of partial differential equations: in that case, a domain is the open connected subset ofFor example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G).
A function f from X to Y . The set of points in the red oval X is the domain of f .
Graph of the real-valued square root function, f ( x ) = x , whose domain consists of all nonnegative real numbers
square rootmathematicsfunctionreal numbersCartesian coordinate systemcodomainrestrictionreal functionpartial functionnatural domaindomain of definitionpiecewisetangent functionintegermathematical analysisdomainnon-emptyconnectedopen settopological spacecomplex analysisreal coordinate spacecomplex coordinate spacepartial differential equationsset theoryproper classArgument of a functionAttribute domainBijection, injection and surjectionDomain decompositionEffective domainImage (mathematics)Lipschitz domainNaive set theoryRange of a functionSupport (mathematics)Mathematical logicCardinalityFirst-order logicFormal proofFormal semanticsFoundations of mathematicsInformation theoryLogical consequenceTheoremTheoryType theoryparadoxesGödel's completenessincompleteness theoremsTarski's undefinabilityBanach–Tarski paradoxtheorem,paradoxdiagonal argumentCompactnessHalting problemLindström'sLöwenheim–SkolemRussell's paradoxLogicsTraditionalClassical logicLogical truthTautologyPropositionInferenceLogical equivalenceConsistencyEquiconsistencyArgumentSoundnessValiditySyllogismSquare of oppositionVenn diagramPropositionalBoolean algebraBoolean functionsLogical connectivesPropositional calculusPropositional formulaTruth tablesMany-valued logicfinitePredicateFirst-orderSecond-orderMonadicHigher-orderFixed-pointQuantifiersMonadic predicate calculushereditaryElementOrdinal numberExtensionalityForcingRelationequivalencepartitionintersectioncomplementCartesian productpower setidentitiesCountableUncountableInhabitedSingletonInfiniteTransitiveUltrafilterRecursiveUniversalUniverseconstructibleGrothendieckVon NeumannSchröder–Bernstein theoremIsomorphismGödel numberingEnumerationLarge cardinalinaccessibleAleph numberOperationbinaryZermelo–Fraenkelaxiom of choicecontinuum hypothesisGeneralKripke–PlatekMorse–KelleyNew FoundationsTarski–GrothendieckVon Neumann–Bernays–GödelAckermannConstructiveFormal systemslanguagesyntaxAlphabetAutomataAxiom schemaExpressiongroundExtensionby definitionconservativeFormation ruleGrammarFormulaatomicclosedFree/bound variableMetalanguageLogical connectivefunctionalvariablepropositional variableQuantifierSentencespectrumSignatureStringSubstitutionSymbollogical/constantnon-logicalaxiomaticsystemsarithmeticelementary functionprimitive recursiveRobinsonSkolemTarski's axiomatizationBoolean algebrascanonicalminimal axiomsgeometryEuclideanElementsHilbert'sTarski'snon-EuclideanPrincipia MathematicaProof theoryNatural deductionRule of inferenceSequent calculusSystemsaxiomaticdeductiveHilbertComplete theoryIndependencefrom ZFCProof of impossibilityOrdinal analysisReverse mathematicsSelf-verifying theoriesModel theoryInterpretationof modelssaturatedsubmodelNon-standard modelof arithmeticDiagramelementaryCategorical theoryModel complete theorySatisfiabilitySemantics of logicStrengthTheories of truthsemanticKripke'sT-schemaTransfer principleTruth predicateTruth valueUltraproductComputability theoryChurch encodingChurch–Turing thesisComputably enumerableComputable functionComputable setDecision problemdecidableundecidableP versus NP problemKolmogorov complexityLambda calculusPrimitive recursive functionRecursionRecursive setTuring machineAbstract logicAlgebraic logicAutomated theorem provingCategory theoryConcreteAbstract categoryCategory of setsHistory of logicHistory of mathematical logictimelineLogicismMathematical objectPhilosophy of mathematicsSupertask