Decidability of first-order theories of the real numbers

The corresponding first-order theory is the set of sentences that are actually true of the real numbers.As proven by Tarski, this theory is decidable; see Tarski–Seidenberg theorem and Quantifier elimination.Current implementations of decision procedures for the theory of real closed fields are often based on quantifier elimination by cylindrical algebraic decomposition.[2][3] In contrast, the extension of the theory of real closed fields with the sine function is undecidable since this allows encoding of the undecidable theory of integers (see Richardson's theorem).Still, one can handle the undecidable case with functions such as sine by using algorithms that do not necessarily terminate always.
mathematical logicreal numberswell-formed sentencesfirst-order logicuniversalexistential quantifierstheorydecidablealgorithmreal closed fieldsalgebraic numbersTarskiTarski–Seidenberg theoremQuantifier eliminationcylindrical algebraic decompositionTarski's exponential function problemexponential functionSchanuel's conjecturesine functionRichardson's theoremrobustConstruction of the real numbersTarski's axiomatization of the realsMacintyre, A.J.Wilkie, A.J.Encyclopedia of MathematicsEMS PressPaulson, Lawrence Charles0.999...Absolute differenceCantor setCantor–Dedekind axiomCompletenessConstructionExtended real number lineGregory numberIrrational numberNormal numberRational numberRational zeta seriesReal coordinate spaceReal lineTarski axiomatizationVitali setCardinalityFormal proofFormal semanticsFoundations of mathematicsInformation theoryLogical consequenceTheoremType theoryparadoxesGödel's completenessincompleteness theoremsTarski's undefinabilityBanach–Tarski paradoxtheorem,paradoxdiagonal argumentCompactnessHalting problemLindström'sLöwenheim–SkolemRussell's paradoxLogicsTraditionalClassical logicLogical truthTautologyPropositionInferenceLogical equivalenceConsistencyEquiconsistencyArgumentSoundnessValiditySyllogismSquare of oppositionVenn diagramPropositionalBoolean algebraBoolean functionsLogical connectivesPropositional calculusPropositional formulaTruth tablesMany-valued logicfinitePredicateFirst-orderSecond-orderMonadicHigher-orderFixed-pointQuantifiersMonadic predicate calculusSet theoryhereditaryElementOrdinal numberExtensionalityForcingRelationequivalencepartitionintersectioncomplementCartesian productpower setidentitiesCountableUncountableInhabitedSingletonInfiniteTransitiveUltrafilterRecursiveUniverseconstructibleGrothendieckVon NeumannFunctiondomaincodomainSchröder–Bernstein theoremIsomorphismGödel numberingEnumerationLarge cardinalinaccessibleAleph numberOperationbinaryZermelo–Fraenkelaxiom of choicecontinuum hypothesisGeneralKripke–PlatekMorse–KelleyNew FoundationsTarski–GrothendieckVon Neumann–Bernays–GödelAckermannConstructiveFormal systemslanguagesyntaxAlphabetAutomataAxiom schemaExpressiongroundExtensionby definitionconservativeFormation ruleGrammarFormulaatomicclosedFree/bound variableMetalanguageLogical connectivefunctionalvariablepropositional variableQuantifierSentencespectrumSignatureStringSubstitutionSymbollogical/constantnon-logicalaxiomaticsystemsarithmeticelementary functionprimitive recursiveRobinsonSkolemTarski's axiomatizationBoolean algebrascanonicalminimal axiomsgeometryEuclideanElementsHilbert'sTarski'snon-EuclideanPrincipia MathematicaProof theoryNatural deductionRule of inferenceSequent calculusSystemsaxiomaticdeductiveHilbertComplete theoryIndependencefrom ZFCProof of impossibilityOrdinal analysisReverse mathematicsSelf-verifying theoriesModel theoryInterpretationof modelssaturatedsubmodelNon-standard modelof arithmeticDiagramelementaryCategorical theoryModel complete theorySatisfiabilitySemantics of logicStrengthTheories of truthsemanticKripke'sT-schemaTransfer principleTruth predicateTruth valueUltraproductComputability theoryChurch encodingChurch–Turing thesisComputably enumerableComputable functionComputable setDecision problemundecidableP versus NP problemKolmogorov complexityLambda calculusPrimitive recursive functionRecursionRecursive setTuring machineAbstract logicAlgebraic logicAutomated theorem provingCategory theoryConcreteAbstract categoryCategory of setsHistory of logicHistory of mathematical logictimelineLogicismMathematical objectPhilosophy of mathematicsSupertaskalgebraic geometry