Hamiltonian field theory

The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time.It is the field analogue to the Lagrangian function for a system of discrete particles described by generalized coordinates.The corresponding dimension is [energy][length]−3, in SI units Joules per metre cubed, J m−3.is the variational derivative Under the same conditions of vanishing fields on the surface, the following result holds for the time evolution of A (similarly for B): which can be found from the total time derivative of A, integration by parts, and using the above Poisson bracket.), Taking the partial time derivative of the definition of the Hamiltonian density above, and using the chain rule for implicit differentiation and the definition of the conjugate momentum field, gives the continuity equation: in which the Hamiltonian density can be interpreted as the energy density, and the energy flux, or flow of energy per unit time per unit surface area.[2] This Hamiltonian formalism is applied to quantization of fields, e.g., in quantum gauge theory.Covariant Hamiltonian field theory is developed in the Hamilton–De Donder,[4] polysymplectic,[5] multisymplectic[6] and k-symplectic[7] variants.A phase space of covariant Hamiltonian field theory is a finite-dimensional polysymplectic or multisymplectic manifold.
Classical mechanicsSecond law of motionHistoryTimelineTextbooksAppliedCelestialContinuumDynamicsField theoryKinematicsKineticsStaticsStatistical mechanicsAccelerationAngular momentumCoupleD'Alembert's principleEnergypotentialFrame of referenceInertial frame of referenceImpulseInertiaMoment of inertiaMechanical powerMechanical workMomentMomentumTorqueVelocityVirtual workNewton's laws of motionAnalytical mechanicsLagrangian mechanicsHamiltonian mechanicsRouthian mechanicsHamilton–Jacobi equationAppell's equation of motionKoopman–von Neumann mechanicsDampingDisplacementEquations of motionEuler's laws of motionFictitious forceFrictionHarmonic oscillatorInertialNon-inertial reference frameMotionlinearNewton's law of universal gravitationRelative velocityRigid bodyEuler's equationsSimple harmonic motionVibrationRotationCircular motionRotating reference frameCentripetal forceCentrifugal forcereactiveCoriolis forcePendulumTangential speedRotational frequencyAngular accelerationfrequencyKeplerGalileoHuygensNewtonHorrocksHalleyMaupertuisDaniel BernoulliJohann Bernoullid'AlembertClairautLagrangeLaplacePoissonHamiltonJacobiCauchyLiouvilleAppellKoopmanvon Neumanntheoretical physicsclassical field theoryLagrangian field theoryquantum field theoryHamiltoniangeneralized coordinatesdegrees of freedomscalar fieldLagrangian density"del" or "nabla" operatorposition vectorpartialvolume integraldimensionSI unitsvector fieldstensor fieldsspinor fieldsbosonsfermionsvariational derivativedot productpartial derivativesphase spacePoisson bracketcommutatorintegration by partschain ruleimplicit differentiationcontinuity equationrelativisticHamiltonian formalismcanonical coordinatesquantization of fieldsgauge theorycanonical momenta Euler–Lagrange equations LagrangianspolysymplecticmultisymplecticHamiltonian non-autonomous mechanicsfiber bundlesreal lineDe Donder–Weyl theoryFour-vectorCanonical quantizationHamiltonian fluid mechanicsCovariant classical field theoryPolysymplectic manifoldNon-autonomous mechanicsSardanashvily, G.BibcodeGoldstein, HerbertGreiner, W.