Particle number operator
In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles.The following is in bra–ket notation: The number operator acts on Fock space.νϕϕϕνbe a Fock state, composed of single-particle statesϕdrawn from a basis of the underlying Hilbert space of the Fock space.Given the corresponding creation and annihilation operatorsϕϕwe define the number operator by{\displaystyle {\hat {N_{i}}}\ {\stackrel {\mathrm {def} }{=}}\ a^{\dagger }(\phi _{i})a(\phi _{i})}ννis the number of particles in stateThe above equality can be proven by noting thatνννν{\displaystyle {\begin{matrix}a(\phi _{i})|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }&=&{\sqrt {N_{i}}}|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }\\a^{\dagger }(\phi _{i})|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }&=&{\sqrt {N_{i}}}|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\rangle _{\nu }\end{matrix}}}ννννν{\displaystyle {\begin{array}{rcl}{\hat {N_{i}}}|\Psi \rangle _{\nu }&=&a^{\dagger }(\phi _{i})a(\phi _{i})\left|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\right\rangle _{\nu }\\[1ex]&=&{\sqrt {N_{i}}}a^{\dagger }(\phi _{i})\left|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i+1},\cdots ,\phi _{n}\right\rangle _{\nu }\\[1ex]&=&{\sqrt {N_{i}}}{\sqrt {N_{i}}}\left|\phi _{1},\phi _{2},\cdots ,\phi _{i-1},\phi _{i},\phi _{i+1},\cdots ,\phi _{n}\right\rangle _{\nu }\\[1ex]&=&N_{i}|\Psi \rangle _{\nu }\\[1ex]\end{array}}}