Non-standard model

In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model).[1] If the intended model is infinite and the language is first-order, then the Löwenheim–Skolem theorems guarantee the existence of non-standard models.The non-standard models can be chosen as elementary extensions or elementary substructures of the intended model.Non-standard models are studied in set theory, non-standard analysis and non-standard models of arithmetic.This mathematical logic-related article is a stub.
model theorymathematical logicisomorphicintended modelfirst-orderLöwenheim–Skolem theoremselementary extensionselementary substructuresset theorynon-standard analysisnon-standard models of arithmeticInterpretation (logic)CardinalityFirst-order logicFormal proofFormal semanticsFoundations of mathematicsInformation theoryLogical consequenceTheoremTheoryType theoryparadoxesGödel's completenessincompleteness theoremsTarski's undefinabilityBanach–Tarski paradoxtheorem,paradoxdiagonal argumentCompactnessHalting problemLindström'sLöwenheim–SkolemRussell's paradoxLogicsTraditionalClassical logicLogical truthTautologyPropositionInferenceLogical equivalenceConsistencyEquiconsistencyArgumentSoundnessValiditySyllogismSquare of oppositionVenn diagramPropositionalBoolean algebraBoolean functionsLogical connectivesPropositional calculusPropositional formulaTruth tablesMany-valued logicfinitePredicateSecond-orderMonadicHigher-orderFixed-pointQuantifiersMonadic predicate calculushereditaryElementOrdinal numberExtensionalityForcingRelationequivalencepartitionintersectioncomplementCartesian productpower setidentitiesCountableUncountableInhabitedSingletonInfiniteTransitiveUltrafilterRecursiveUniversalUniverseconstructibleGrothendieckVon NeumannFunctiondomaincodomainSchröder–Bernstein theoremIsomorphismGödel numberingEnumerationLarge cardinalinaccessibleAleph numberOperationbinaryZermelo–Fraenkelaxiom of choicecontinuum hypothesisGeneralKripke–PlatekMorse–KelleyNew FoundationsTarski–GrothendieckVon Neumann–Bernays–GödelAckermannConstructiveFormal systemslanguagesyntaxAlphabetAutomataAxiom schemaExpressiongroundExtensionby definitionconservativeFormation ruleGrammarFormulaatomicclosedFree/bound variableMetalanguageLogical connectivefunctionalvariablepropositional variableQuantifierSentencespectrumSignatureStringSubstitutionSymbollogical/constantnon-logicalaxiomaticsystemsarithmeticelementary functionprimitive recursiveRobinsonSkolemreal numbersTarski's axiomatizationBoolean algebrascanonicalminimal axiomsgeometryEuclideanElementsHilbert'sTarski'snon-EuclideanPrincipia MathematicaProof theoryNatural deductionRule of inferenceSequent calculusSystemsaxiomaticdeductiveHilbertComplete theoryIndependencefrom ZFCProof of impossibilityOrdinal analysisReverse mathematicsSelf-verifying theoriesInterpretationof modelssaturatedsubmodelof arithmeticDiagramelementaryCategorical theoryModel complete theorySatisfiabilitySemantics of logicStrengthTheories of truthsemanticKripke'sT-schemaTransfer principleTruth predicateTruth valueUltraproductComputability theoryChurch encodingChurch–Turing thesisComputably enumerableComputable functionComputable setDecision problemdecidableundecidableP versus NP problemKolmogorov complexityLambda calculusPrimitive recursive functionRecursionRecursive setTuring machineAbstract logicAlgebraic logicAutomated theorem provingCategory theoryConcreteAbstract categoryCategory of setsHistory of logicHistory of mathematical logictimelineLogicismMathematical objectPhilosophy of mathematicsSupertask