Isotropic quadratic form

The isotropy index of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces.An important example of an isotropic form over the reals occurs in pseudo-Euclidean space.If we consider the general element (x, y) of V, then the quadratic forms q = xy and r = x2 − y2 are equivalent since there is a linear transformation on V that makes q look like r, and vice versa.The notation ⟨1⟩ ⊕ ⟨−1⟩ has been used by Milnor and Husemoller[1]: 9  for the hyperbolic plane as the signs of the terms of the bivariate polynomial r are exhibited.For a general field F, classification of definite quadratic forms is a nontrivial problem.
quadratic formdefinite quadratic formvector spacenull vectorquadratic spacesubspacesignaturepseudo-Euclidean spacehyperbolic geometrycharacteristiclinear transformationquadratic formsreal numbershyperbolasunit hyperbolabivariate polynomialEmil Artinsymmetric bilinear formorthogonalhyperbolic-orthogonalorthogonal complementWitt's decomposition theoreminner product spaceorthogonal direct sumalgebraically closedcomplex numbersfinite fieldp-adic numbersIsotropic linePolar spaceWitt groupWitt ring (forms)Universal quadratic formMilnor, J.Ergebnisse der Mathematik und ihrer GrenzgebieteSpringer-VerlagInternet ArchiveUniversity of MiamiCoral Gables, FloridaTsit Yuen LamW. A. BenjaminAmerican Mathematical SocietyO'Meara, O.TSerre, Jean-PierreGraduate Texts in Mathematics