Fuzzy sphere

In mathematics, the fuzzy sphere is one of the simplest and most canonical examples of non-commutative geometry.Ordinarily, the functions defined on a sphere form a commuting algebra.It is generated by spherical harmonics whose spin l is at most equal to some j.The terms in the product of two spherical harmonics that involve spherical harmonics with spin exceeding j are simply omitted in the product.This truncation replaces an infinite-dimensional commutative algebra by athat form a basis for the j dimensional irreducible representation of the Lie algebra su(2)., then the above equation concerning the Casimir operator can be rewritten as which is the usual relation for the coordinates on a sphere of radius r embedded in three dimensional space.One can define an integral on this space, by where F is the matrix corresponding to the function f. For example, the integral of unity, which gives the surface of the sphere in the commutative case is here equal to which converges to the value of the surface of the sphere if one takes j to infinity.J. Hoppe, Quantum Theory of a Massless Relativistic Surface and a Two dimensional Bound State Problem.PhD thesis, Massachusetts Institute of Technology, 1982.
mathematicsnon-commutative geometryspherespherical harmonicssquare matricestotally antisymmetric symbolCasimir operator