Fedosov manifold

is a symplectic form, a non-degenerate closed exterior 2-form, on aIn other words, the symplectic form is parallel with respect to the connection, i.e., its covariant derivative vanishes.)Then choose a partition of unity (subordinate to the cover) and glue the local connections together to a global connection which still preserves the symplectic form.The famous result of Boris Vasilievich Fedosov gives a canonical deformation quantization of a Fedosov manifold.This differential geometry-related article is a stub.You can help Wikipedia by expanding it.This mathematical physics-related article is a stub.
symplectic manifoldconnectionsymplectic formcovariant derivativeDarboux chartspartition of unitydeformation quantizationBibcodeManifoldsGlossaryTopological manifoldDifferentiable/Smooth manifoldDifferential structureSmooth atlasSubmanifoldRiemannian manifoldSmooth mapSubmersionPushforwardTangent spaceDifferential formVector fieldAtiyah–Singer indexDarboux'sFrobeniusGeneralized StokesHopf–RinowNoether'sSard'sWhitney embeddingDiffeomorphismGeodesicExponential mapin Lie theoryFoliationImmersionIntegral curveLie derivativeSectionClosedCollapsingAlmostComplexContactFiberedFinslerG-structureHadamardHermitianHyperbolicKählerKenmotsuLie groupLie algebraManifold with boundaryNilmanifoldOrientedParallelizablePoissonQuaternionicHypercomplexPseudo−Sub−RiemannianSymplecticTensorsDistributionLie bracketbundleTorsionVector flowClosed/ExactCotangent spaceDe Rham cohomologyVector-valuedExterior derivativeInterior productPullbackRicci curvatureRiemann curvature tensorTensor fielddensityVolume formWedge productBundlesAdjointAffineAssociatedCotangentFibrationStableNormalPrincipalSpinorSubbundleTangentTensorVectorConnectionsCartanEhresmannGeneralizedKoszulLevi-CivitaParallel transportClassification of manifoldsGauge theoryHistoryMorse theoryMoving frameSingularity theoryBanach manifoldDiffeologyDiffietyFréchet manifoldK-theoryOrbifoldSecondary calculusover commutative algebrasStratifoldSupermanifoldStratified spacedifferential geometrymathematical physics