Effective input noise temperature

In telecommunications, effective input noise temperature is the source noise temperature in a two-port network or amplifier that will result in the same output noise power, when connected to a noise-free network or amplifier, as that of the actual network or amplifier connected to a noise-free source.If F is the noise factor numeric and 290 K the standard noise temperature, then the effective noise temperature is given by T n = 290(F − 1).This article incorporates public domain material from Federal Standard 1037C.General Services Administration.This article related to telecommunications is a stub.
telecommunicationsnoise temperaturetwo-port networkamplifiernoise powernoise factorpublic domain materialGeneral Services AdministrationMIL-STD-188Acoustic quietingDistortionNoise cancellationNoise controlNoise measurementNoise reductionPhase distortionBuildingsElectronicsEnvironmentGovernment regulationHuman healthImagesSound maskingTransportationAdditive white Gaussian noiseAtmospheric noiseBackground noiseBrownian noiseBurst noiseCosmic noiseFlicker noiseGaussian noiseGrey noiseInfrasoundJitterJohnson–Nyquist noisePink noiseQuantization errorShot noiseWhite noiseValue noiseGradient noiseWorley noiseChannel noise levelCircuit noise levelEquivalent noise resistanceEquivalent pulse code modulation noiseImpulse noise (audio)Noise figureNoise floorNoise shapingNoise spectral densityNoise, vibration, and harshnessPhase noisePseudorandom noiseStatistical noiseCarrier-to-noise ratioCarrier-to-receiver noise densityModulation error ratioSignal, noise and distortionSignal-to-interference ratioSignal-to-noise ratioSignal-to-noise ratio (imaging)Signal-to-interference-plus-noise ratioSignal-to-quantization-noise ratioContrast-to-noise ratioList of noise topicsAcousticsColors of noiseInterference (communication)Noise generatorSpectrum analyzerThermal radiationLow-pass filterMedian filterTotal variation denoisingGaussian blurAnisotropic diffusionBilateral filterNon-local meansBlock-matching and 3D filteringShrinkage FieldsDeep Image Prior